In order to provide a theoretical basis for the protection and development of T. ciliata germplasm resources, we studied the genetic diversity of T. ciliata by using SSR (Simple Sequence Repeat) primers to evaluate the genetic diversity of 192 T. ciliata germplasm samples from 24 populations of 5 provinces. DataFormater, Popgene, NTSYS, TFPGA and other software were used for genetic data conversion, genetic parameter estimation, dendrogram construction and genetic variation analysis. The results showed that: 1) a total of 17 alleles (Na) were detected in seven pairs of primers, with an average of 2.260 for each primer. Among them, the highest numbers of alleles (4) were detected in primers S11 and S422.The mean value of Nei’s genetic diversity index (H) was 0.4909, the mean value of Shannon information index (I) was 0.7321, and the mean value of polymorphic information content (PIC) was 0.5182. The mean expected heterozygosity (He) and observed heterozygosity (Ho) were 0.1055 and 0.4956, respectively. The Nei°s genetic distances of the populations ranged between 0.0002 and 2.6346, and the mean was 0.5477. The average genetic diversity level (H=0.1044) of the 24 populations was lower than that of the species (H=0.4909). 2) The genetic differentiation coefficients (Fst) varied from 0.2374 to 0.9148, with an average value of 0.7727. The mean of population gene flow (Nm) was 0.0735, indicating a low level of genetic exchange between populations, and suggesting that the genetic variation mainly came from within populations. 3) With the UPGMA method, the 24 populations were clustered into 3 groups at Nei’s genetic identity (0.99): the populations from Guizhou Province and Guangxi Zhuang Autonomous Region were clustered into one group, the populations from Hunan Province were in another group, and the populations from Hubei Province were in the third group. The Mantel test analysis showed a significant correlation between Nei’s genetic distance and geographic distance (r=0.6318, P=0.009?0.05). The genetic diversity of the 24 populations of T. ciliata was at a low level. Geographic isolation was the main reason for genetic differentiation among T. ciliata provenances. In the protection of germplasm resources of T. ciliata, emphasis should be placed on breeding genetic resources from the populations with higher genetic diversity (P14, for example). As for the populations with low genetic diversity, an ex-situ protection strategy as well as ecological and timber objectives, should be taken into account to maximize the conservation and utilization of the diversity of T. ciliata.
Coastal sand dune ecosystems generally have infertile soil with low water-holding capacity and high salinity. However, many plant species have adapted to the harsh sand environment along the southeastern coast of China. Studying the microbial biomass in such an ecosystem can improve our understanding of the roles that microbes play in soil fertility and nutrient cycling. We investigated the differences in soil microbial biomass carbon (MBC) and nitrogen (MBN) contents and their seasonal dynamics in five forest types (a secondary forest and plantations of Casuarinas, Pine, Acacia, and Eucalyptus). The results indicated that the seasonal variations of soil MBC and MBN contents in all five forest stands were higher in spring and winter, but lower in summer and autumn. The MBC content was lower in the Casuarinas plantation than in the other plantations in the same soil layer. However, no significant differences were observed in MBN contents among the different forest types. The MBC and MBN concentrations were positively correlated with soil moisture, but negatively correlated with soil temperature. The MBC and MBN contents also decreased with increasing soil depth. Across all soil layers, secondary forest had the highest MBC and MBN concentrations. Our study also showed that the MBC and MBN contents were positively affected by total soil carbon (TC), pH, and litter N content, but were negatively impacted by soil bulk density and litter C content. Moreover, the MBN content was positively correlated with root N content. In summary, environmental factors and the differences in litter and fine roots, soil nutrient contents, as well as the soil physical and chemical properties caused by different tree species collectively affected the concentrations of the soil MBC and MBN.
Pinus taiwanensis is a species endemic to China. This study selected four typical plots of Pinus taiwanensis in the natural secondary forest around Macheng City, in order to reveal the characteristics of and the relationships between different diameter classes (determined based on the diameter at breast height or DBH), forest densities and species diversity, as well as the similarities of species diversity of different plots within the community. The result showed that Pinus taiwanensis was the dominant species in the community. The ratio of Pinus taiwanensis trees of diameter class IV reached a peak of 19.46% of the total followed by diameter class VII at 18.92%. The study recorded 156 species of vascular plants from 130 genera of 71 families; Pinus taiwanensis was the dominant species in the community. When the forest density was 1200 trees ha -1 with the largest average diameter of DBH=36.779±4.444 cm, the diversity (Shannon index H'=1.6716) and the evenness (Pielou index E=0.6727) of the tree layer was the highest. When the forest density reached 1525 trees ha -1 with the lowest average diameter of DBH=18.957±5.141 cm, the richness (Dma=5.4308), the diversity (H'=2.9612) and the evenness (E=0.8985) of all shrub layers climbed to the maximum. When the forest density was 1325 trees ha -1, the richness (Dma=5.8132), the diversity (H'=3.0697) and the evenness (E=0.9025) of all herb layers peaked. In terms of vertical structure, the average diversity indexes were herb layer>shrub layer>tree layer. High canopy density weakened light intensity in the community, causing a reduction in the species diversities of herbs and shrubs. The average similarity coefficient between the sample plots was 0.3356, which was at the medium dissimilarity level. External disturbances and improper management were major contributors to the low species diversity of the community. The implementation of scientific management measures is urgently needed to optimize the forest structures of Pinus taiwanensis, create a benign community environment, and promote species diversities and establish a stable forest community structure.
Himalayan region represents the highest and most diverse treeline over the world. As one of the most conspicuous boundaries between montane forests and alpine vegetation, the alpine timberline attracted the interest of researchers for many decades. However, timberline in the Himalayas is understudied compared with European counterparts due to remoteness. Here we review the distribution pattern of timberline and its climatic condition, the carbon and nutrient supply mechanism for treeline formation, and treeline shift and treeline tree recruitment under climate change scenarios. Growth limitation, rather than carbon source limitation is the physiological cause of timberline under the low temperature condition. Nutrient limitation and water stress are not the direct cause of timberline formation. However, more clear local limitation factors are need to integrate in order to enable us to predict the potential impacts and changes caused by human activity and related global change in this sensitive region.
A comparative discussion of the advantages and disadvantages of natural stands and plantations, including in terms of their productivity and stability, began from the moment of the first forest plantings and continues to this day. In the context of the progressive replacement of natural forests by plantations due to deforestation, the question of how will change the carbon storage capacity of forest cover when replacing natural forests with artificial ones in a changing climate becomes extremely relevant. This article presents the first attempt to answer this question at the transcontinental level on a special case for two-needled pine trees (subgenus Pinus L.). The research was carried out using the database compiled by the authors on the single-tree biomass structure of forest-forming species of Eurasia, in particular, data of 1880 and 1967 of natural and plantation trees, respectively. Multi-factor regression models are calculated after combining the matrix of initial data on the structure of tree biomass with the mean January temperature and mean annual precipitation, and their adequacy indices allow us to consider them reproducible. It is found that the aboveground and stem biomass of equal-sized and equal-aged natural and plantation trees increases as the January temperature and precipitation rise. This pattern is only partially valid for the branches biomass, and it has a specific character for the foliage one. The biomass of all components of plantation trees is higher than that of natural trees, but the percent of this excess varies among different components and depends on the level of January temperatures, but does not depend at all on the level of annual precipitation. A number of uncertainties that arose during the modeling process, as well as the preliminary nature of the obtained regularities, are noted.